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Real fluid turbulence satisfies the Navier-Stokes equations
�NSEs� and has a well established phenomenology, which
is partially summarized in the form of the energy
spectrum shown in Fig. 1. In the context of renormalization
group �RG�, the local �in wave number� Reynolds number
R0�k���E�k��1/2 /�0k1/2 �see Ref. �1��, where �0 is the fluid
kinematic viscosity, is the coupling constant. From Fig. 1, we
see that the local coupling vanishes at k=0 and as k→�. In
field theory this is described as asymptotic freedom �2�. In
turbulence it is present in both the “ultraviolet” and the “in-
frared.”

Before putting forward our proposal for a theoretical
model with associated perturbation expansion, we will first
expand on these preliminary remarks, introducing both the
turbulence problem and its relationship to statistical field
theory. To state the problem, we consider a random velocity
field u��k , t�, with zero mean, on the wave number range
0�k�kmax; and with covariance given by

�u��k,t�u��k�,t��� = P���k���k + k��Q�k,t − t�� , �1�

where P���k�=���−k�k��k�−2. As is well known, this form is
appropriate to turbulence which is homogeneous, isotropic,
and stationary in time.

In order to pose this problem, we must provide some sort
of input in order to sustain the turbulence against the effects
of viscous dissipation. This can be done in various ways, but
the most usual is to introduce a stirring force f��k , t�, with
covariance

�f��k,t�f��k�,t��� = P���k���k + k��D�k� , �2�

where the force spectral density D�k� is arbitrarily chosen
and determines the rate �W at which the forces do work on
the fluid. This is readily shown to be

�W = 	
0

	

4
k2D�k�dk 
 	
0

	

W�k�dk , �3�

where W is the force spectrum and 	 is chosen to be small
compared to the wave numbers characterized by inertial �i.e.,
nonlinear� transfer, which in turn are small compared to

those wave numbers where the viscous dissipation occurs. In
other words, the effects of the force spectrum should be con-
fined to small wave numbers so that the energy spectrum at
large wave numbers is determined solely by the equation of
motion. Also note that for stationary turbulence we must
have �W=�, where � is the viscous dissipation.

It is not possible to give a precise value for kmax, so we
adopt the expedient of choosing it large enough to capture
the rate of dissipation � to some specified accuracy. If the
Reynolds number is sufficiently large, then we expect to ob-
serve a k−5/3 spectrum over a subrange of wave numbers
kb�k�kt. The lower limit kb is set by the autocorrelation of
the stirring forces while the upper limit kt is related to the
Kolmogorov dissipation wave number kd

�0�= �� /�0
3�1/4, al-

though kd
�0� overestimates kt by nearly an order of magnitude

and underestimates kmax by a similar amount.
Referring now to Fig. 1, we reflect conventional wisdom

in dividing the energy spectrum into a low-wave-number re-
gion, where the shape of the spectrum depends on the way in
which it was produced �the “production range”� and the
higher wave numbers where we may expect universal behav-
ior with the spectrum taking a form g�k /kd

�0��, where g is
some well-behaved function which remains to be deter-
mined. The universal range can be further divided into the
inertial range, where E�k�=��2/3k−5/3, and the viscous range,
where the spectrum falls off faster than a power. The prefac-
tor � is often referred to as the Kolmogorov constant and is

*Electronic address: w.d.mccomb@ed.ac.uk FIG. 1. Sketch of the turbulence energy spectrum E�k�.
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currently believed to take a value of about �=1.62.
The development of modern turbulence theory was based

on an analogy between the equations for macroscopic fluid
turbulence and those of quantum field theory �3–6�. In par-
ticular, it was pointed out that turbulence provided an ex-
ample of a quantum field theory in which the coupling con-
stant �i.e., the Reynolds number� could be varied in the
laboratory from zero to infinity �7�. Later, it was argued that
an analogy existed between turbulence and critical phenom-
ena �8� and this led to the application of RG to stirred hy-
drodynamics.

However, it must be borne in mind that there are signifi-
cant differences between the two subjects. In turbulence the
relevant power law �Kolmogorov� is completely determined
by energy conservation and scale invariance, whereas in
critical phenomena there is no analog of the flux of energy
though the modes and the power laws must be obtained
using RG. In contrast, RG can only verify the power law
in turbulence but can predict the prefactor. Similarly,
asymptotic freedom in critical phenomena has to be
discovered by the vanishing of the coupling constant
under RG transformation. Evidently, in turbulence this
property emerges trivially by inspection of the spectrum.
Nevertheless, we would emphasize the remarkable resem-
blence between the phenomenology of the turbulence spec-
trum and a symmetry-breaking phase transition such as
paramagnetism� ferromagnetism. At k=0 and k→� we
have trivial fixed points corresponding to, respectively, the
high-temperature �disordered� and low-temperature �ordered�
fixed points. At k=k*=kt we have a nontrivial fixed point
marking the onset of scaling behavior, analogous �perhaps�
to spontaneous magnetization. Indeed, every wave number in
the inertial range corresponds to a fixed point and it is usual
to refer to this as “a line of fixed points.”

In order to introduce the RG transformation, we filter the
velocity field �using a Heaviside step function� at some
k1�k0, and attempt to average out the effect of the high-k
modes in the shell k1�k�k0 �the u+� while holding the low-
k modes �the u−� constant. There are two difficulties here:
first we need a conditional average; second this procedure
will generate higher-order nonlinearities, starting with the
triplet u−u−u−.

We may now state the RG algorithm as applied to the
NSE, as follows.

Filter the velocity field u�k , t� into u−�k , t� on 0�k�k1

and u+�k , t� on k1�k�k0. The RG algorithm consists of two
steps.

�1� Solve the NSE on k1�k�k0. Substitute that solution
for the mean effect of the high-k modes into the NSE on
0�k�k1. This results in an increment to the viscosity
�0→�1=�0+��0.

�2� Rescale the basic variables so that the NSE on
0�k�k1 looks similar to the original NSE on 0�k�k0.

These steps are repeated for k2�k1, k3�k2, and so on;
until a fixed point is reached and this defines the renormal-
ized viscosity. The general idea is illustrated schematically in
Fig. 2.

As may be seen from Fig. 1, there are two possible ap-
proaches to applying RG to the Navier-Stokes equation. The
first of these is to choose the cutoff k0 at low wave numbers

and look for a fixed point as k→0. In the first version of this
approach �9�, the initial wave number was taken to be
k0=�, where � is an artificial “ultraviolet” cutoff, chosen
to be low enough to exclude the effects of the nonlinear
cascade. The lower wave number which defines the
band of wave numbers to be eliminated is then set as
k1=� exp�−b�. The situation is illustrated in Fig. 2 and this
choice hints at the fact that this approach leads to differential
equations rather than finite recursion relations. Next, the u+

are expanded about a zero order solution obtained from the
�bare� viscous response and the stirring forces. The result is a
perturbation series, very similar to those in statistical field
theory, with coefficients evaluated as integrals against the
Gaussian distribution. Accordingly the need for a conditional
average is satisfied trivially at each order in perturbation
theory and it turns out that the higher-order nonlinearities
vanish as k→0. Corrections to the bare viscosity �and other
bare quantities� are calculated in terms of the arbitrarily cho-
sen stirring forces. For example, the viscosity increment ��0
is given by its value at k=0, thus

��0 =
2D0A�d�Sd�exp��l� − 1�

�0
2���2
�d�

, �4�

with �=4+y−d and

A�d� =
d2 − d − �

2d�d + 2�
, Sd =

2
d/2

��d/2�
, �5�

where D0 and y together represent the effect of the force
spectrum, which is arbitrarily chosen to have the form
D�k�=D0k−y and, as we have seen, b is used in defining the
cutoff between the u+ and u− modes, � exp�−b�, where � is
the upper cutoff wave number. Due to the requirement
k→0, this theory does not describe actual turbulence, but is
instead a theory of the long-wavelength properties of stirred
hydrodynamics. For the pioneering papers, see Refs. �9,10�,
and for an overview of the many other versions of this ap-
proach see Ref. �11�.

The second approach is to choose k0 as the maximum
wave number kmax, and the lower limit of the band to be

FIG. 2. Sketch illustrating the choice of wave number bands for
Gaussian perturbation theory at small wave numbers and the choice
of wave number bands for recursive RG at large wave numbers.
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eliminated is then chosen to be k1=hk0, where h is the spatial
rescaling factor, such that 0�h�1 and is related to the
bandwidth � of the shell to be eliminated by h=1−�. Fur-
ther bands can be generated by taking kn=hnk0 and the gen-
eral situation is again illustrated in Fig. 2. This approach
rules out Gaussian perturbation theory, as we are now oper-
ating in the non-Gaussian, turbulent range of wave numbers.
Accordingly one is faced with the need for a nontrivial con-
ditional average. While some early attempts were made to
approximate this by a filtered ensemble average �12,13�, a
more successful approach was to formulate a conditional av-
erage which could be evaluated approximately �14–16�. In
Fig. 3 we illustrate the behavior of a finite recursion relation
for the viscosity, showing that a fixed point is reached after
the elimination of four or five shells of modes, independently
of a wide variation in choices of initial viscosity. Figure 3
also shows that once a fixed point is reached, the iteration
stays there �naturally� even though we are moving to pro-
gressively lower wave numbers. As shown in Fig. 1, these
fixed points lie on a line following k−5/3. This also illustrates
the asymptotic nature of our theory, which cannot tell us
anything about the production range of wave numbers unless
we take a realistic forcing term into account in the equation
of motion.

In this work we find that the renormalized viscosity for
the Nth cycle �at the fixed point n=N�, has the similarity
solution

�N�k� = �1/2�1/3kN
−4/3�̃N�k/kN� , �6�

where the function �̃N is determined from the numerical
calculation and is essentially constant as k→0, with a
slight rolloff as k tends to the current cutoff value kN
�see Eq. �82� in Ref. �16��. This result corresponds to the
energy spectrum taking the Kolmogorov form. When this
form is substituted for the missing “implicit” stresses in the
equation for the explicit modes �i.e., Eq. �10� in this paper�,
and the resulting equation integrated with respect to wave

number on 0�k�kN, we obtain the renormalized equation
for the dissipation rate as

� = 	
0

kN

2�N�k�k2E�k�dk . �7�

Then, substitution of the above form for �N�k� and the Kol-
mogorov form for E�k� yields an expression for the Kolmog-
orov prefactor

� = �2	
0

1

�̃N�k��k�1/3dk��−2/3

. �8�

These results appear as Eqs. �91� and �92�, respectively, in
Ref. �16�.

Taking a prediction for the Kolmogorov prefactor as a test
of the method, we can see from Fig. 4, that our 1992 theory
represented quite an improvement on our earlier approach.
But this work still relied on “plausible” approximations that
higher moments of the high-k modes could be neglected and
that their time evolution could be treated by a Markovian
approximation. Later we showed that both these approxima-
tions could be subsumed into a consistent perturbation ex-
pansion in powers of the local Reynolds number; and criti-
cisms of our Taylor series expansion of the chaotic k-space
velocity field were answered by a modified procedure which
led to a similar expansion of the covariance instead �17�.
More recently a minor error in that work was corrected and
Fig. 4 shows the current theoretical prediction for � �18�.
�Although the vast bulk of work in this field consists of
variations on Gaussian perturbation theory �11�, it is perhaps
worth mentioning that there has been growing recognition of
the need to consider a nontrivial average in order to treat real
fluid turbulence �19–24�.�

However, a price paid for these improvements was that
the vanishing of the 2u−u+ term in Eq. �10� under conditional
average seemed anomalous when one considered that this
term had the same value of local Reynolds number �i.e.,
coupling parameter� as the u+u+ term which made the sole
contribution to the renormalized viscosity. In this paper we
introduce a non-Gaussian perturbation expansion in the con-
trol parameter of the conditional average and then re-expand
in the local Reynolds number, hence recovering our existing
results in a less heuristic way. The method has its roots in a

FIG. 3. The renormalized viscosity reaching a fixed point in
recursive RG for three different choices of initial �bare� kinematic
viscosity.

FIG. 4. Dependence of the predicted Kolmogorov constant � on
the choice of shell thickness �or bandwidth� parameter �.
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previous attempt to produce a more systematic derivation
�25� and also in the generalized Reynolds averaging used in
the earliest version of this theory �12�.

The NSE may be written as

 �

�t
+ �0k2�u��k,t� = M����k� 	 d3ju��j,t�u��k − j,t� ,

�9�

where M����k�= �2i�−1�k�P���k�+k�P���k��. It should be
emphasized that we are now operating at wave numbers
greater than 	 and accordingly the turbulence is independent
of the details of the stirring forces and merely depends on the
rate at which they do work on the fluid in order to have a
stationary state. In order to underline the fact that our pertur-
bation theory, unlike that of Forster et al. �10�, does not rely
on the stirring forces as such, we simply omit them from the
equation of motion. Nevertheless, it should be borne in mind
that we still require, in principle at least, some input term, be
it stirring forces, negative damping or direct injection of en-
ergy or momentum.

Let us decompose the NSE into low and high wave num-
ber forms. It will also be convenient to introduce an integrat-
ing factor and integrate over time, thus

u�
−�k,t� = 	

−�

t

dse−�0k2�t−s�M���
− �k� 	 d3j�u�

−�j,s�u�
−�k − j,s�

+ 2u�
−�j,s�u�

+�k − j,s� + u�
+�j,s�u�

+�k − j,s�� �10�

and

u�
+�k,t� = 	

−�

t

dse−�0k2�t−s�M���
+ �k� 	 d3j�u�

−�j,s�u�
−�k − j,s�

+ 2u�
−�j,s�u�

+�k − j,s� + u�
+�j,s�u�

+�k − j,s�� , �11�

where  is a book-keeping parameter which is set equal to
unity at the end of the calculation. Note that although  is not
renormalized, the local Reynolds number which is the true
coupling constant contains the viscosity and is automatically
renormalized with it.

A detailed formulation of the conditional average for cha-
otic systems has been given elsewhere �15�. Here it is suffi-
cient to summarize it as follows. Consider a set of realiza-
tions �u��k , t��, with their low-k parts clustering around one
particular member of the set v�

−�k , t�, such that

u�
−�k,t� = v�

−�k,t� + ��
−�k,t� , �12�

where �− is the control parameter for the conditional average
and is chosen such that

��−�c = 0 and �u−�c = v−. �13�

In principle, the bounds on �− can be determined from a
predictability study of Eq. �11�, but clearly the more unpre-
dictable turbulence is, the smaller is �−; and, of course,
where the conditional average is over modes with asymptotic
freedom, �−=0. In this work we shall assume that �− is
small in regions of interest, such that we can treat its square

as being of the second order of small quantities and neglect
it. For example,

�uk
−uj

−�c = vk
−v j

− + O���k
−� j

−�c� , �14�

as �− and v− are not correlated.
For perturbation theory we require a zero-order field, so

let us now introduce a function ṽ�
+�k , t�, which is the solution

of the model equation

ṽ�
+�k,t� = 	

−�

t

dse−�0k2�t−s�M���
+ �k� 	 d3j�v�

−�j,s�v�
−�k − j,s�

+ ṽ�
+�j,s�ṽ�

+�k − j,s�� . �15�

We should emphasize that this equation does not affect the
v− or v+ fields in any way. We also note that Eq. �15� is not
intended to represent any real system, any more than the
Gaussian model in the theory of critical phenomena, which
possesses neither a low-temperature fixed point nor a phase
transition in under four dimensions. Comparing this model
equation with Eq. �11�, we note the absence of the direct
coupling �or “cross”� term of the form 2u−u+, means that
direct coupling between the low-k and high-k modes is lim-
ited to the band of wave numbers k1�k�2k1. In our present
type of calculation the cutoff can be chosen as low as
k1=0.1k0, thus holding out the possibility of an extended
range of asymptotic freedom over as much as 0.2k0�k�k0.

In the interests of conciseness, we shall give most of our
exposition in terms of a contracted notation in which wave
number, tensor index, and time are all combined into a single
subscript and �for example� the NSE, as given by Eq. �9�,
becomes

L0kuk = Mkujuk−j or uk = G0kMkujuk−j , �16�

where G0k=L0k
−1. Now introduce a perturbation series for the

u+ field

uk
+ = uk

+�0� + uk
+�1� + 2uk

+�2� + ¯ , �17�

where  is the book-keeping parameter. In order to obtain the
coefficients, first subtract Eq. �15� from Eq. �11� for u+ to
obtain

uk
+ = ṽk

+ + G0kMk
+

��uj
−uk−j

− + 2uj
−uk−j

+ + uj
+uk−j

+ − v j
−vk−j

− − ṽ j
+ṽk−j

+ �;
�18�

then, substituting Eq. �17� into both sides of Eq. �18� yields

uk
+�0� + uk

+�1� + 2uk
+�2� + ¯

= ṽk
+ + G0kMk

+�uj
−uk−j

− + 2uj
−uk−j

+�0� + u+�0�uk−j
+�0� − vk

−vk−j
−

− ṽ j
+ṽk−j

+ + 2uj
−uk−j

+�1� + 2uj
+�0�uk−j

+�1� + ¯ � . �19�

Equating coefficients of each power of :

uk
+�0� = ṽk

+, �20�

uk
+�1� = G0kMk

+�uj
−uk−j

− − v j
−vk−j

− + 2uj
−uk−j

+�0�� , �21�

where, from Eq. �20� there is a cancellation of u+�0�u+�0� and
ṽ+ṽ+ terms in Eq. �21�. Also, from Eq. �14�, when Eq. �21� is
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conditionally averaged, the cancellation of u−u− and v−v−

terms removes the triple nonlinearity to O��−�−�. Accord-
ingly the conditionally averaged coefficients are

�uk
+�0��c = �ṽk

+�c = �ṽk
+� = 0, �22�

�uk
+�1��c = G0kMk

+�� j
−�k−j

− �c. �23�

Now substituting the perturbation series �17� into the
equation for u− �i.e., Eq. �10� in contracted notation and with
the differential operator restored to the left-hand side� gives
to order 2:

L0kuk
− = Mk

−uj
−uk−j

− + 2Mk
−�uj

−uk−j
+�0� + 2uj

−uk−j
+�1��

+ Mk
−�uj

+�0�uk−j
+�0� + 22uj

+�0�uk−j
+�1�� . �24�

Next, take the conditional average of both sides of Eq.
�24�. Two of the terms on the right-hand side vanish by Eqs.
�22� and �23�, while the term in u+�0�u+�0� vanishes by homo-
geneity, leaving

L0kvk
− = Mk

−vk
−vk−j

− + 22Mk
−�uj

+�0�uk−j
+�1��c, �25�

where from Eqs. �22� and �23� we see that the “cross term”
in Eq. �24� is O��−�−� when conditionally averaged.

We shall now outline the procedure which leads to the
second term on the right-hand side of Eq. �25� being written
as

22Mk
−�v+�0�uk−j

+�1��c = ��0�k�k2uk
− + O��−�−,R3�k1�� .

�26�

The conditional average in Eq. �25� can be evaluated by
forming a dynamical equation �26� for �uj

+�0�uk−j
+�1��c. We

have to bear in mind that both fields are taken at the same
time t, so we need to form separate equations of motion for
each of uj

+�0� and uk−j
+�1�. Noting that uj

+�0�= ṽ j
+, the evolution

equation is just the model equation �15�, while the evolution
equation for uk−j

+�1� is obtained by rewriting Eq. �21� in terms
of k→k− j. The end result �and restoring full notation� is
readily found to be

�u�
+�0��j,t�u�

�1�+�k − j,t��c

= 	
−�

t

dse−��0k2+�0�k − j�2��t−s�2M����j�

�	 d3p�ṽ��j − p,s�ṽ��k − j,s��cu�
−�p,s� . �27�

This result is substituted back into Eq. �25�, where it is
integrated over j in the band k1� j�k0. The crucial point
here is that, for the vectors j−p and k−p both in the
range of asymptotic freedom of the model equation
�Eq. �15��, the conditional average over the model field
must in turn reduce to an unconditional covariance, with

�ṽ��j−p ,s�ṽ��k− j ,s��c= P���k− j���k−p�Q̃��k− j � �. As be-
fore, we argue that the actual field must be asymptotically
free at the ultraviolet cutoff, and so we make the hypothesis
that the model covariance can be related to the actual cova-
riance by Taylor series expansion of the latter about k=k0.
This leads to our increment to the viscosity �in its current,

corrected form �18��, here generalized to the nth shell elimi-
nation

��n�k� =
1

k2 	 d3j
L�k,j���Q+�l��l=kn

+ ��l − kn���Q/�l��l=kn
�

�n�j�j2 + �n��k − j���k − j�2 − �n�k�k2 ,

�28�

where l=k− j and the coefficient L�k , j� is given by

L�k,j� = − 2M����k�M����j�P���k − j� . �29�

Evidently, even the model field is not asymptotically free
over the entire band, particularly in the neighborhood of
k=k1. However, an exact symmetry ensures that energy
transfer vanishes for triads with all sides equal. Therefore
there is a deficit of energy transfer from modes with wave
numbers just below the cutoff, to those just above. Bearing in
mind that the increment to the viscosity depends on an inte-
gral over the wave numbers in the band, it is perhaps not
surprising that we obtain good results for the Kolmogorov
prefactor, with the implication that the method captures en-
ergy transfer quite well.

Of course, it would be incorrect to assume that the same
would apply for momentum transfers; for example, if we
were to try to use Eq. �25� for large-eddy simulation. This
can be seen by considering Eq. �10�. If we form a correlation
coefficient between u− and the right-hand side of the equa-
tion, it must be equal to unity, indicating that u− is in phase
with the function on the right-hand side. However, correla-
tion coefficients formed between u− and the individual parti-
tions of the right-hand side must all be less than unity, indi-
cating that none of the individual partitions is in phase with
u−. This tells us that representation of any one of these indi-
vidual partitions in terms of an eddy viscosity �or any deter-
ministic quantity� acting on the u− is actually incorrect; be-
cause a result such as Eq. �26� is necessarily perfectly in
phase with u−.

It is an article of faith in the application of RG that the
final result �i.e., a prediction of an observable� should not
depend on the values of arbitrarily chosen parameters; a con-
cept sometimes referred to as renormalization invariance. In
field theoretic RG, renormalization invariance is a defining
postulate but in later applications to critical phenomena it has
been seen as something which should emerge naturally from
the method �2�. In the turbulence problem, the arbitrary pa-
rameters are the initial value of the viscosity �0 and the band-
width � �or, equivalently, the spatial rescaling factor h�.

In Fig. 3 we have seen that the renormalized viscosity is
insensitive to the choice of initial viscosity and in Fig. 4 that
the calculated Kolmogorov constant is insensitive over a
range of values of the bandwidth. To be more specific, we
find that �=1.62±0.05 over the range 0.2���0.6. This
gives us some indication of the quantitative behavior of our
approximation. Evidently this breaks down for ��0.2 be-
cause the band becomes so small that the integral over wave
number j �in Eq. �28�� is dominated by behavior near the
lower cutoff wave number kn. Conversely, the breakdown of
the theory for ��0.6 can be attributed to the inadequacy of
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the first-order truncation of the Taylor-series expansion about
the upper cutoff wave number kn−1, when the bandwidth be-
comes large.

The perturbation expansion which we propose here differs
in several respects from Gaussian perturbation theory. In the
latter �10�, all higher-order coefficients u�1� ,u�2� , . . ., are ex-
pressed in terms of u�0�, which is Gaussian, and all averages
are evaluated accordingly. In the present method we do not
work with the coefficients explicitly, but instead with their
conditional covariances �u�0�u�0��c, �u�0�u�1��c , . . . .

We then solve governing equations for higher-order con-
ditional covariances �u�0�u�1��c, �u�1�u�1��c , . . ., and express
these in terms of the zero-order �u�0�u�0��c, which is then
related to the actual turbulence covariance by means of the
Taylor-series expansion about the upper cutoff wave number.

However, the need for a “different” perturbation theory is
surely manifest if we compare the Gaussian result for ��0 in
Eq. �4�, with its explicit dependence on the arbitrary stirring
spectrum D0k−y, with the result from iterative conditional
averaging, as given by Eq. �28�, which depends on the actual
turbulence spectrum at large wave numbers. Moreover, from
Fig. 2, we can see that Gaussian perturbation theory is lim-
ited to low values of wave number where the coupling
R�k�→0, as k→0. In contrast, the present method eliminates
finite blocks of modes, in a process where the coupling in-
creases initially but is ultimately bounded by R�k*�=0.4 at
the fixed point �17�. Another relevant order of magnitude can
be obtained as follows. Choosing kmax=1.6kd

�0� �a typical cri-
terion for direct numerical simulations, with the prefactor
chosen for easy arithmetic� and �=h=0.5, for a fixed point
value of n=4 �see Fig. 3�, and the numerical value of the
fixed-point wave number is found to be kt= �0.5�41.6kd

�0�

=0.1kd
�0�, in agreement with the usual value for the division

between inertial and dissipation ranges.
Evidently considerations of this kind completely rule out

the use of differentially small RG transformations when
seeking to reduce the number of degrees of freedom of tur-
bulence at large wave numbers. In order to eliminate large
“blocks” of modes, as pointed out earlier, we have to evalu-
ate a conditional average. Accordingly our definition of
“soluble” in putting forward a soluble model, is one for
which a conditional average reduces to an unconditional tur-
bulence average. This brings us to the classic dilemma of
many-body theory: faced with an insoluble problem one
wishes to find an approximate model which is �a� reasonably
representative of the exact problem and �b� soluble. It is well
known that it is difficult to reconcile these two requirements,
and perturbation theory is supposed to bridge the gap. There-
fore, once we have settled for solubility, we are forced to a
consideration of the question: how representative is the
model?

This question is not easily answered. The model has been
constructed by removing one class of interactions �i.e., the
direct coupling or “cross” term� from the high-wave-number
NSE. As the RG iteration begins in the far dissipation range
�where viscous effects dominate�, we might suppose that the
absence of a part of the nonlinear term might not matter.
However, when ultimately the calculation reaches a fixed
point, it has entered the inertial range and we might wish the
model to be compatible with the Kolmogorov spectrum, or,
at least, to exhibit scale invariance and energy conservation;
both of which underpin the k−5/3 spectrum. This could be
achieved by introducing the low-wave-number model field
ṽk

− with its own evolution equation, which also has a class of
interactions �in this case, the Reynolds-type ṽ j

+ṽk−j
+ term� re-

moved. This then raises the possibility of producing a unified
treatment in which the low-wave-number model field is used
to generate the subensemble for the conditional average. We
are working on this at the present time and hope to submit it
for publication in due course.
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